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Abstract

The prescription for introducing a gauge
transformation into a quantum transition amplitude,

nominally well known, contains an ambiguous feature.

It is presumed by some authors that an appropriate
transformation of the phase of a wave function will

generate the associated gauge transformation. It is
shown that this is a necessary but not sufficient

step. Examples from the literature are cited to show

the consequences of the failure of this procedure. One

must distinguish between true gauge transformations
and unitary transformations within a fixed gauge.

I. Introduction

The necessary procedure to introduce a change of gauge in

quantum mechanics is quite standard [1,2]. (We adopt the

terminology that the phrase "gauge transformation" implies the
so-called "gauge transformation of the second kind" [1].) This

quantum-mechanical procedure begins with a change in the
potentials employed to represent an electromagnetic field, and
then associates with these altered potentials a changed

interaction Hamiltonian and a particular phase transformation of

the wave function. Some practitioners presume the inverse: that

the phase transformation of the wave function will always imply

that a gauge transformation has been done. It is the aim of this
paper to show that this inverse procedure does not necessarily

produce a gauge transformation, and that significant

misinterpretations can occur thereby.
When a non-gauge-changing unitary transformation (a "phase

transformation") is presumed to actually produce a gauge
transformation, it may not have practical ill consequences. In

some cases, it simply induces an identity transformation in the
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transition amplitude. The outcome is less benign when the

non-gauge phase transformation is interpreted as a gauge
transformation, and used to infer further physical conclusions.

For example, this has led to the concept that one particular gauge
is more fundamental than others. These difficulties are discussed
in Sec. 3 after a review of basic information in Sec. 2.

2. Formal Background

The approach taken here is that of semi-classical

electrodynamics. Quantization of the fleld is not necessary for
present purposes. Both relativistic and non-relativistic
formulations will be used; relativistic because matters are

clearer in that context, and non-relativistic because that is

where the difficulties have actually occurred. It is presumed

throughout that the fields and the gauge-transformation functions

are explicitly time dependent.

A gaug_ transformation of the electromagnetic four-vector
potential A_ by the real, scalar generating function A is

accomplished by

A _ _ Ac_ = A _ - 8_A (2.1)

or the non-relativistic equivalent

¢ -> _c = 4, - aA/a(ct) (2.2)

(2.3)

where A"=(#._). This is accompanied in quantum mechanics by a

change in the phase of the wave function induced by the unitary
transformation

,_, -_ @c, == U#, (2.4)

with

U = exp(ieA). (2.5)

When one wishes to change the gauge in which a transition

amplitude is expressed, it is necessary to know how the
Hamiltonian is transformed. It follows directly from the

Schr6dinger equation that this transformed Hamiltonian operator is

given by

H_ - ihS/St = U (H - ihS/St) U*, (2.6)

or, equivalently, by [3,4]

= uHu* -ihu-b* = usu t + _h6"u*, (2.7)
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where the dot on the U indicates the time derivative. The Dirac

analog of this Schr_dinger result is instructively simple. From

the Dirac equation

(iS-e_-m)_ = O, (2.8)

one obtains

ts(it-et-m)u*v = - o, (2.9)

_HA_ ' c is given by Eq.(2.1).where _ • and A

The transition amplitude employed will be the generic form

(S-1)f I = -(i/h) _ dt (#t, Si#t), (2.10)

which is commonplace in scattering theory, but is useful also in

bound-state problems. It represents a physical situation in which
the transition-inducing electromagnetic field is not present at

asymptotic times, i.e., there is no field present at large
negative times when the initial state is prepared and at large

positive times when final measurement of the transition products
is made. The state # is one with no electromagnetic field present.

Its Hamiltonian will be called Ho. The state • satisfies the

Schr6dinger equation with full interaction. In other words,

(ihSt-Ro)® = O,
(ihat-S )# = O,

H = Ho+H I.

(2.11)

(2.12)

(2.13)

For the usual problem in which an atomic or molecular potential V

is present at asymptotic times, as distinct from the

electromagnetic field whose application causes transitions, one
can state

Ho = (p2/2m)+V, HI = (I/2m)(e_._/c+e_._/c+eZA2)+e# (2.14)

in an arbitrary gauge, where no stipulation has been made as to

how the field is to be represented by scalar or vector potentials,
or a combination of both. To be as straightforward as possible in

this formalism, it is required that the field is to be turned on

and off adiabatically, so that one can require the vector

potential at both positive and negative asymptotic times to be the
same (nominally zero). This restriction is known [3-8] to assure
that the same physical result will arise from the transition

amplitude in Eq.(2.10) in different gauges, but with the use of

exactly the same non-interacting wave function _t, regardless of

the choice of gauge for Hx and @i-
Finally, the relativistic transition amplitude analogous to
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Eq. (2.10) is stated [9]

(S-1)rl = -(i/h) f d'x _re_@i, (2.15)

where _ is the Dirac adjoint _=_*7°, and a static binding

potential is singled out, so that the non-interacting and

interacting Dirac equations are, respectively,

(iS-7°V-m)_ - 0 (2.16)

(iB-e_-7°V-m)@ = O. (2.17)

3. Statement of the Problem

Whereas there is really no ambiguity in the information

reviewed in Sec. 2, the way in which it is employed in the

literature is not uniform. A simple unifying concept which serves
to characterize the inconsistencies which arise is to note that

they all stem from the improper notion that a gauge-change-like

unitary transformation applied to the wave function is a guarantee

that a gauge change has actually occurred.

Possibly the simplest example of this problem occurred in

connection with the demonstration [10,11] that the substitution

#=U# in Eq.(2.10) (for a particular choice of U) can give a good

approximation for certain classes of transitions in which dressing

by a low frequency field is present. The result of this

approximation is that Eq.(2.10) becomes

(S-1)r i = -(i/h) f dt (#r, HiU#l). (3.1)

This has, however, been characterized as a gauge transformation

[12] solely on the grounds of the presence of the unitary factor

U, even though there is no transformation at all of the

interaction Hamiltonian H I.

Another example is a procedure intended to change the gauge

in which a transition amplitude is expressed in a fashion which is

purported to be "manifestly gauge invariant". The device employed

is simply to inse_rt a unit operator into the transition amplitude
in the form of UU. Then the U factors are attached to the wave

functions, and a gauge transformation is presumed to be

accomplished. (A clear example of this is in Ref.13.) Equation

(2.10) would then become

= -(i/h) | dt ( ). (3 2)(U_t),(UH, U )(U#)J

Since the wave functions now bear the unitary transformation

factors U as in Eq.(2.4), they are regarded by some authors as

being in a new gauge.

There are several defects with the above procedure. One is
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the fact that the non-interacting wave function _ is transformed
as well as the interacting wave function 9. This fact has been

noted by some authors, and concluded to be necessary [13-18]. A
corollary of this procedure is that there then exists a preferred

gauge, since only in one gauge is it possible to have the
non-lnteracting wave function appear without its unitary

transformation factor. The preferred gauge normally selected is

the so-called "length gauge", or "EF" gauge, where the
dipole-approximation interaction Hamiltonian is Hz=-e_._. For

example, the statement is made that [14] "... the _e_tbook wave
functions can, In general, only be applied in the E.@ formalism

...". The presumed necessity to apply a field-dependent gauge
transformation factor to represent a non-interacting state in any

gauge other than the length gauge has been termed an oxymoron

[193.
Another problem with the procedure expressed in Eq.(3.2) is

that the interaction Hamiltonian is not properly stated. The true

gauge-transformed interaction Hamiltonian follows from Eq.(2.6) or
(2.7), taken together with Eq.(2.13). By contrast, the form

H p = UHxU t (3.3)
I

is simply a unitary (or phase) transformation of the operator H I.

It is not the gauge-transformed interaction Hamiltonian. The

actual gauge-transformed interaction Hamiltonian is given by

HxG = UHU*x + (UHoU*-Ho) + ihUU*. (3.4)

The clearest way to see the true meaning of Eq.(3.2) is to

employ the relativistic form given in Eq.(2.15). The lack of
second order differential operators in the Dirac equation and the

simple form e_ for the interaction term makes the relativistic

form especially clear for formal purposes. The procedure analogous
to Eq.(3.2) employed in Eq.(2.15) gives

(S-l )ri = -(i/h)_ d4x _re_UTU@!

= -(i/h) a[ dix (U_r)e_(U$), (3.5)

since U always commutes with e_. Equation (3.5) shows plainly that

there is no gauge transformation at all. The interaction term

remains identically the same as the original, and does not
transform to the new gauge as would follow from Eq.(2.1).

The procedure in Eq.(3.5), as in Eq.(3.2), is simply a

unitary transformation within a fixed gauge.

4. Resolution of the Problem

The resolution of the ambiguities discussed above is

straightforward. One simply states a transition amplitude in an

unspecified gauge, containing all four components of the
electromagnetic potential function, as given in, for example,
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Eq.(2.15). In a particular gauge, designated by the superscript

(a) , this is

= -(i/h) J[ d4x _fe"Ca)#(')A | . (4.1)(S-1)t,

In gauge (b), it is

(S-1)£i -(i/h) _ _X T .(b)...(b)- ,fe_ v i . (4.2)

The non-interacting state 0f is the same in both instances since

it is independent of the field. This is the type of transparent

gauge invariance that has also been given the name "manifest gauge

invariance" [19], although that description is risky, since

the same phrase means different things to different researchers. A

better name would be "strong gauge invariance", since it so

strongly stresses the complete equivalence of all gauges.

There is no clear algebraic transformation that connects

Eq.(4.1) with (4.2). Nevertheless, they must be equivalent if all

gauges are equally valid. This has been shown by calculation of

practical examples [6,7] as well as by the demonstration [3] that

the formal difference between the expressions which are the

non-relativistic analogs of Eqs.(4.1) and (4.2) has a null result.

The mis-identification of the simple phase transformation in

Eq.(3.2) or (3.4) as a gauge transformation follows from an

attempt to achieve algebraic identity between transition

amplitudes in different gauges. What is achieved instead is simply

a unitary transformation within a fixed gauge.

Another motivation for employing Eq.(3.3) as a

gauge-transformed interaction Hamiltonian in place of Eq.(3.4)

makes use of arguments [14,15] involving dependen_e_on the dipole

approximation and on the preferred use of the _._. interaction.

Such arguments are inherently risky. One cannot view as

fundamental a formalism which depends critically on an interaction

which cannot extend to very strong fields or to the presence of

significant magnetic influences.
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